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Abstract. Finite-dimensional quantum mechanics (quantum mechanics on finite discrete space
ZM—the cyclic group of orderM) is developed further: in analogy with the usual harmonic
oscillator coherent states, an overcomplete family of coherent states over the phase space
ZM × ZM is constructed and their properties are determined.

1. Introduction

Coherent states belong to the most important tools in numerous applications of the quantum
theory. They found many various applications in quantum optics, quantum field theory,
quantum statistical mechanics [1, 2]. Our papers [3, 4] were devoted to the basic notions of
finite-dimensional quantum mechanics on configuration spaceZM , whereZM is the cyclic
group of orderM. In [3], our approach was based on Mackey’s irreducible system of
impritivity. Thereby, we were able to extend Schwinger’s treatment to an arbitrary Weyl
system in finite-dimensional Hilbert spaces. In order to generalize the notion of coherent
states to this framework, i.e. over the phase spaceZM × ZM , we make consequent use of
the analogy with the usual harmonic oscillator coherent states.

Finite-dimensional quantum mechanics was first developed by Weyl [5] in connection
with the investigation of Abelian groups of rotations of projective spaces. Weyl constructed a
set of unitary operators in a Hilbert space of dimensionM in complete analogy with the Weyl
system over the Euclidean configuration space. Recently, in quantum optics, discrete phase
space appeared in connection with the quantum description of phase conjugated to number
operators [6], with the introduction of discrete quasi-distributions [7], and with rotation
angle—angular momentum variables [8]. The group theoretical point of view of canonical
transformations on a finite phase space was studied in [9]. Moreover, in quantum optics the
question of the coherent states over finite spaces was studied [10, 11]. Formulations of the
finite-dimensional quantum mechanics have been given in several papers [12–14, 3, 4].

In section 2 we study the basic relations of quantum mechanics on discrete finite space, in
section 3 the coherent states are constructed and in section 4 some examples of overcomplete
families of coherent states are presented.

2. Finite-dimensional quantum mechanics

The basic relations of finite-dimensional quantum mechanics will be presented following
[12]. For the sake of simplicity we shall restrict our attention to one classical degree of
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freedom, i.e. the configuration space is the cyclic groupZM , M being a power of a prime
[3]. Quantum theories for several degrees of freedom can be obtained as tensor products of
theories of one degree.

Let j take one ofM discrete values,j = 0, 1, . . . ,M−1. With each value ofj , a vector
|j〉 of an orthonormal basis ofM-dimensional complex Hilbert space,HM , is associated.
Then aposition operator[12, 3, 4] is defined by

Q̂ =
M−1∑
j=0

j |j〉〈j |.

The eigenvectors ofQ̂ form a basis{|j〉} of the Hilbert spaceHM , and j are the
corresponding eigenvalues. We have(|j〉)i = δi,j in this basis.

Momentum operatorsare defined via unitary shift operators on the set{|j〉} closed into
a periodic chain (ZM ‘manifold’) by the conditions of periodicity

|j〉 = |j +M〉.
The one-step shift operator transforms the vectors|j〉,

Û (1) : |j〉 7→ |j + 1〉 (moduloM)

and its powers generate cyclic permutation matricesÛ (k) = (Û(1))k, Û (k)|j〉 = |j + k〉,
with (Û(1))M = Îd. The operatorsÛ (k), k = 0, 1, . . . ,M − 1, provide the regular
representation of the cyclic groupZM in H.

A momentum operator, P̂ , with eigenvalues,k, and eigenvectors,|k〉, is then defined in
a similar way as in the continuous case [12], i.e. via

Û (1) = e−
2π i
M
P̂

in analogy with a generator of a one-parameter group of unitary transformations. The
eigenvectors|k〉 of P̂ corresponding to eigenvaluesk = 0, . . . ,M − 1, which can be
expanded in position eigenvectors

|k〉 = 1√
M

∑
j

e
2π i
M
kj |j〉. (1)

Let us note that (1) is the discrete Fourier transformation of the eigenvectors|j〉. Matrix
elements of the operator̂P in the basis of eigenvectors of̂Q are

〈m|P̂ |n〉 = 1

M

∑
k

ke
2π i
M
k(m−n) =


M − 1

2
if m = n

1

e
2π i
M
(m−n) − 1

+ 1

M
otherwise

and matrix elements of the commutator are

〈m|[Q̂, P̂ ]|n〉 = (m− n)〈m|P̂ |n〉.
Although these commutation relations differ from the continuous case, the exponential

Weyl relationsstill hold in the discrete case [12] in the form [12, 3]

e
2π i
M
tQ̂e

2π i
M
sP̂ = e−

2π i
M
tse

2π i
M
sP̂e

2π i
M
tQ̂ (2)

or

e
π i
M
tse

2π i
M
tQ̂e

2π i
M
sP̂ = e−

π i
M
tse

2π i
M
sP̂e

2π i
M
tQ̂.
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The unitary operators e
2π i
M
Q̂ and e

2π i
M
P̂ generate thefinite Weyl group, which acts irreducibly

in the Hilbert spaceHM [3]. In section 3 we shall make use of the expressions

e
π
M e

2π
M
Q̂e

2π i
M
P̂ = e−

π
M e

2π i
M
P̂e

2π
M
Q̂ (3)

for special valuess = 1, t = −i, analogous to

e−
1

2h̄ e
1
h̄
q̂e

i
h̄
p̂ = e

1
2h̄ e

i
h̄
p̂e

1
h̄
q̂ = e

1
h̄
(q̂+ip̂). (4)

in the continuous case.

3. Construction of the coherent states

Let us first look for a ‘vacuum’ vector|0, 0〉 in Hilbert space,HM , in analogy with the
continuous case. In the continuous case of the usual harmonic oscillator the vacuum vector
|0〉c is defined byâ|0〉c = 0, or êa|0〉c = |0〉c, where â = 1√

2h̄
(q̂ + ip̂) is the annihilation

operator. Making use of the analogy of (4) and (3), we look for a vector|φ〉 in Hilbert
space,HM , satisfying the relation

e−
π
M e

2π i
M
P̂e

2π
M
Q̂|φ〉 = |φ〉. (5)

In order to solve (5), we expand|φ〉 into a linear combination of eigenvectors|j〉 of position
operator

|φ〉 = AM
M−1∑
j=0

fj |j〉 (6)

now if we apply (3) and obtain relations to be satisfied by the expansion coefficientsfj ,

fj−1 = e
−π
M e

2πj
M fj for j = 1, 2 . . . ,M − 1 (7)

fM−1 = e
−π
M f0. (8)

It turns out, however, that the ‘periodicity’ relation (8) forj = 0 cannot be matched with
the recurrence relations (7), whenM = 3, 4, . . ., and the vector|φ〉 does not exist. For
M = 2, the solutionsdo exist: f0 = c, f1 = ce− π

2 , c = constant. Also in the limitM →∞
(i.e. discarding (8)) the solutions of (7) exist,

fj = ce− π
M
j2
.

A family of generalized coherent states of type0(g), |ψ0〉 in the sense of Perelomov
[15] is defined in a representation0(g) of a groupG as a family of states{|ψg〉},
|ψg〉 = 0(g)|ψ0〉, whereg runs over the whole groupG and |ψ0〉 is the ‘vacuum’ vector.

In our case we try to follow the continuous case of the usual harmonic oscillator as a
guide, with the coherent states

|x + iy〉c = e
i
h̄
(yq̂−xp̂)|0〉c where(x, y) ∈ R2

defined by the action of the Heisenberg–Weyl group representation on|0〉c ∈ L2(R). So
we will act in an analogous way on a ‘vacuum’ vector|0, 0〉 by the representation (2) of
the finite Weyl group and so define thegeneralized coherent states of type{Ŵ (m, a), |ψ0〉},
where|φ〉 ∈ HM is arbitrary. The operators

Ŵ (m, a) = e−
2π i
M
mP̂e

2π i
M
aQ̂
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are calledWeyl operators. The coherent states|m, a〉 are thus defined by

|m, a〉 = Ŵ (m, a)|0, 0〉
or

|m, a〉 = e−
2π i
M
mP̂e

2π i
M
aQ̂|0, 0〉 m, a = 0, . . . ,M − 1. (9)

As the first choice of our ‘vacuum’ vector|0.0〉 we will take the vector with the
coordinatesfj = e−

π
M
j2

, j = 0, . . . ,M − 1, i.e. |0, 0〉 = AM
∑M−1
j=0 fj |j〉, even if (5)

is not satisfied. The normalization of|0, 0〉 requires

AM =
(M−1∑
j=0

f 2
j

)− 1
2

.

Using the decomposition (6), the coherent states (9) can be expanded in terms of the
position eigenvectors

|m, a〉 = AM
M−1∑
j=0

e−
π
M
j2

e
2π i
M
aj |j +m〉.

For the inner product (overlap) of two coherent states inH the formula

〈k, b|m, a〉 = A2
Me

2π i
M
(ak−bm)

M−1∑
ρ=0

fρ+kfρ+me
2π i
M
ρ(a−b)

is obtained. With its help the following identity can be proved,

M−1∑
k=0

M−1∑
b=0

|k, b〉〈k, b|m, a〉 = M|m, a〉

which means that our coherent states form anovercomplete systemin the usual sense [2]:

1

M

M−1∑
k=0

M−1∑
b=0

|k, b〉〈k, b| = 1̂.

If the system is prepared in the coherent state|k, b〉, then the probability to measure the
eigenvaluej of position operatorQ̂, Q̂|j〉 = j |j〉 is

|〈j |k, a〉|2 = A2
Me−

π
M
(j−k)2

and it is maximal whenj = k. Similarly the probability to measure the eigenvaluep of
momentum operator̂P , P̂ |p〉 = p|p〉 is

|〈p|k, a〉|2 = |AM
M

∑
ρ

e−
π
M
ρ2

e
2π i
M
ρ(p−a)|2

and it is maximal whenp = a.
Denotingz = m+ ia, |z〉 = |m, a〉, wherem, a ∈ ZM , one can simply show that in the

limit M →∞
e−

π
M e

2π i
M
P̂e

2π
M
Q̂|z〉 = e

2π
M
z|z〉 (10)

and, of course, the expectation value of e
π
M e

2π
M
Q̂e

2π i
M
P̂ is

〈z|eπ
M e

2π
M
Q̂e

2π i
M
P̂ |z〉 = e

2π
M
z
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Let us denotex = l + ic, y = k + ib andw = n + id, wherel, c, k, b, n, d ∈ ZM . Then
our coherent states clearly define areproducing kernelK(x, y),

K(x, y) = 1

AMM
〈x|y〉

with the reproducing property

K(x, y) =
∑
n

∑
d

K(x,w)K(w, y).

Remark 1.Modifying the prefactor e
−π
M in condition (5) to the form

eβe
2π i
M
P̂e

2π
M
Q̂|0, 0〉s = |0, 0〉s (11)

one can findβ and a new ‘vacuum’ vector|0, 0〉s for anyM = 2, 3, . . .. Namely, let|0, 0〉s
be expanded in position eigenvectors|j〉,

|0, 0〉s = BM
M−1∑
j=0

gj |j〉. (12)

Substituting (12) into (11) and using periodicity conditions one can show that

β = −πM − 1

M
and gj = e−

π
M
j2− 2π

M
j+πj .

Applying the same procedure as in (9) on the new ‘vacuum’|0, 0〉s , one can define a
new family of coherent states|m, a〉s by

|m, a〉s = e−
2π i
M
mP̂e

2π i
M
aQ̂|0, 0〉s m, a = 0, . . . ,M − 1.

However, the expectation values for the coherent states|k,m〉s differ from the expectation
values for|k,m〉. If the system is prepared in the coherent state|k, b〉s , then the probabillity
to measure the eigenvaluej of position operatorQ̂, Q̂|j〉 = j |j〉 is

|〈j |k, a〉s | = BMe−
π
M
(j−k)2− 2π

M
(j−k)−π(j−k)

and it is maximal whenj = k − 1+ M
2 .

Remark 2.The overcompleteness property can be traced back to the proposition in [16].
The set ofM2 Weyl operatorsŴ (m, a) satisfies

tr(Ŵ (m, a)Ŵ (m, a)∗) = Mδss ′δtt ′∑
m,a

Ŵ (m, a)Ŷ Ŵ (m, a)∗ = MÎ tr Ŷ

whereŶ is an arbitrary complexM ×M matrix.
Namely, applying the second identity in Schwinger’s proposition to the projection

operatorŶ = |ψ0〉〈ψ0|, with tr Ŷ = 1, theovercompletenessof generalized coherent states
of type {Ŵ (m, a), |ψ0〉} is a straightforward consequence:∑

m,a

|m, a〉〈m, a| = MÎ.
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Figure 1. Phase spaceZ7 × Z7. The planes correspond to complex eigenvectors of position
operators, where the vertical axis is imaginary and the horizontal axis is real. The arrows then
show the projections of the given coherent state on each position eigenvector. Since the lengths
of projectionsl on different complex planes differ by several orders, we have modified them:
the length of drawn arrows is ln( l

e−20 ).

Remark 3.As is well known, coherent states have been at the heart of quantum optics from
its beginnings. They are the quantum states which seem the closest, one can approach a state
of classical electromagnetic fields of well defined amplitude and phase. It is remarkable that
recently, in order to properly define aphase operatorcanonically conjugate to the number
operator, the formalism of quantum mechanics in Hilbert space of finite dimension was used
(see, e.g. [10], and references therein). The eigenstates of these operators are our bases|j〉
and |k〉, related by the discrete Fourier transformation (1). Thus,Q̂ is interpreted as the
number operator and its eigenstates|j〉 as the firstM bosonic Fock states. The phaseθk is
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Figure 1. (Continued)

connected with our momentumk by

θk = θ0+ 2π
k

M

whereθ0 is chosen arbitrary, defining a phase window. After evaluating physical quantities
in HM , the limit M →∞ is taken.

4. Examples

In this section we give explicit formulae for the families of coherent states withM = 2, 3, 4
and also drawings of projections for eight coherent states withM = 7 (figure 1).

Phase spaceZ2× Z2:

|0, 0〉 = 1√
1+ e−π

(|0〉 + e−
π
2 |1〉)
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|0, 1〉 = 1√
1+ e−π

(|0〉 − e−
π
2 |1〉)

|1, 0〉 = 1√
1+ e−π

(|1〉 + e−
π
2 |0〉)

|1, 1〉 = 1√
1+ e−π

(|1〉 − e−
π
2 |0〉).

Phase spaceZ3× Z3:

|0, 0〉 = A3(|0〉 + e−
π
3 |1〉 + e−

4π
3 |2〉)

|0, 1〉 = A3(|0〉 + e
2π i
3 e−

π
3 |1〉 + e

4π i
3 e−

4π
3 |2〉)

|0, 2〉 = A3(|0〉 + e
4π i
3 e−

π
3 |1〉 + e

8π i
3 e−

4π
3 |2〉)

|1, 0〉 = A3(|1〉 + e−
π
3 |2〉 + e−

4π
3 |0〉)

|1, 1〉 = A3(|1〉 + e
2π i
3 e−

π
3 |2〉 + e

4π i
3 e−

4π
3 |0〉)

|1, 2〉 = A3(|1〉 + e
4π i
3 e−

π
3 |2〉 + e

8π i
3 e−

4π
3 |0〉)

|2, 0〉 = A3(|2〉 + e−
π
3 |0〉 + e−

4π
3 |1〉)

|2, 1〉 = A3(|2〉 + e
2π i
3 e−

π
3 |0〉 + e

4π i
3 e−

4π
3 |1〉)

|2, 2〉 = A3(|2〉 + e
4π i
3 e−

π
3 |0〉 + e

8π i
3 e−

4π
3 |1〉)

whereA3 = 1√
1+e−

2π
3 +e−

8π
3

.

Phase spaceZ4× Z4:

|0, 0〉 = A4(|0〉 + e−
π
4 |1〉 + e−π |2〉 + e−

9π
4 |3〉)

|0, 1〉 = A4(|0〉 + ie−
π
4 |1〉 − e−π |2〉 − ie−

9π
4 |3〉)

|0, 2〉 = A4(|0〉 − e−
π
4 |1〉 + e−π |2〉 − e−

9π
4 |3〉)

|0, 3〉 = A4(|0〉 − ie−
π
4 |1〉 − e−π |2〉 + ie−

9π
4 |3〉)

|1, 0〉 = A4(|1〉 + e−
π
4 |2〉 + e−π |3〉 + e−

9π
4 |0〉)

|1, 1〉 = A4(|1〉 + ie−
π
4 |2〉 − e−π |3〉 − ie−

9π
4 |0〉)

|1, 2〉 = A4(|1〉 − e−
π
4 |2〉 + e−π |3〉 − e−

9π
4 |0〉)

|1, 3〉 = A4(|1〉 − ie−
π
4 |2〉 − e−π |3〉 + ie−

9π
4 |0〉)

|2, 0〉 = A4(|2〉 + e−
π
4 |3〉 + e−π |0〉 + e−

9π
4 |1〉)

|2, 1〉 = A4(|2〉 + ie−
π
4 |3〉 − e−π |0〉 − ie−

9π
4 |1〉)

|3, 0〉 = A4(|3〉 + e−
π
4 |0〉 + e−π |1〉 + e−

9π
4 |2〉)

|3, 3〉 = A4(|3〉 − ie−
π
4 |0〉 − e−π |1〉 + ie−

9π
4 |2〉)

whereA4 = 1√
1+e−

π
2 +e−2π+e−

9π
2

.
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